Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Gene ; 918: 148476, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657876

RESUMEN

AIMS: To investigate the association between mitochondrial events and immune response in periodontitis and related regulatory genes. MAIN METHODS: Gene expression profiles in gingival tissues were retrieved from the Gene Expression Omnibus. Mitochondria-immune response-related differentially expressed genes (MIR-DEGs) between the healthy and periodontitis samples were determined. WGCNA, GO, and KEGG were used to investigate the function and the enriched pathways of MIR-DEGs. The correlation between MIR-DEGs expression and clinical probing pocket depth was analyzed. The MIR-DEGs were further identified and verified in animal samples. A periodontitis model was established in C57BL/6 mice with silk ligation. Micro-computed tomography was used to assess alveolar bone loss. Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses further validated the differential expression of the MIR-DEGs. KEY FINDINGS: A total of ten MIR-DEGs (CYP24A1, PRDX4, GLDC, PDK1, BCL2A1, CBR3, ARMCX3, BNIP3, IFI27, and UNG) were identified, the expression of which could effectively distinguish patients with periodontitis from the healthy controls. Enhanced immune response was detected in the periodontitis group with that in the healthy controls, especially in B cells. PDK1 was a critical MIR-DEG correlated with B cell immune response and clinical periodontal probing pocket depth. Both animal and clinical periodontal samples presented higher gene and protein expression of PDK1 than the control samples. Additionally, PDK1 colocalized with B cells in both animal and clinical periodontal tissues. SIGNIFICANCE: Mitochondria participate in the regulation of the immune response in periodontitis. PDK1 may be the key mitochondria-related gene regulating B-cell immune response in periodontitis.

2.
Acta Pharmacol Sin ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641745

RESUMEN

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 µg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to ß-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain ß-catenin protein stability by removing the K48 ubiquitin chain from ß-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of ß-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-ß-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for ß-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating ß-catenin-mediated vascular diseases.

3.
Acta Pharm Sin B ; 14(4): 1693-1710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572108

RESUMEN

Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167140, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38548092

RESUMEN

Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.

5.
Small ; : e2310584, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470191

RESUMEN

Renewable energy is crucial for sustainable future, and Cu2 ZnSnS4 (CZTS) based solar cells shine as a beacon of hope. CZTS, composed of abundant, low-cost, and non-toxic elements, shares similarities with Cu(In,Ga)Se2 (CIGS). However, despite its promise and appealing properties for solar cells, CZTS-based solar cells faces performance challenges owing to inherent issues with CZTS material, and conventional substrate structure complexities. This review critically examines these roadblocks, explores ongoing efforts and breakthroughs, providing insight into the evolving landscape of CZTS-based solar cells research. Furthermore, as an optimistic turn in the field, the review first highlights the crucial need to transition to a superstrate structure for CZTS-based single junction devices, and summarizes the substantial progress made in this direction. Subsequently, dive into the discussion about the fascinating realm of CZTS-based tandem devices, providing an overview of the existing literature as well as outlining the possible potential strategies for enhancing the efficiency of such devices. Finally, the review provides a useful outlook that outlines the priorities for future research and suggesting where efforts should concentrate to shape the future of CZTS-based solar cells.

6.
Bioorg Chem ; 145: 107215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394920

RESUMEN

Doublecortin-like kinase 1 (DCLK1) is a microtubule-associated protein kinase involved in neurogenesis and human cancer. Recent studies have revealed a novel functional role for DCLK1 in inflammatory signaling, thus positioning it as a novel target kinase for respiratory inflammatory disease treatment. In this study, we designed and synthesized a series of NVP-TAE684-based derivatives as novel anti-inflammatory agents targeting DCLK1. Bio-layer interferometry binding screening and kinase assays of the NVP-TAE684 derivatives led to the discovery of an effective DCLK1 inhibitor (a24), with an IC50 of 179.7 nM. Compound a24 effectively inhibited lipopolysaccharide (LPS)-induced inflammation in macrophages with higher potency than the lead compound. Mechanistically, compound a24 inhibited LPS-induced inflammation by inhibiting DCLK1-mediated IKKß phosphorylation. Furthermore, compound a24 showed in vivo anti-inflammatory activity in an LPS-challenged acute lung injury model. These findings suggest that compound a24 may serve as a novel candidate for the development of DCLK1 inhibitors and a potential therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Quinasas Similares a Doblecortina , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico
7.
Eur J Med Chem ; 268: 116252, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422703

RESUMEN

The modification based on natural products is a practical way to find anti-inflammatory drugs. In this study, 26 osthole derivatives were synthesized, and their anti-inflammatory properties were evaluated. The preliminary activity study revealed that most osthole derivatives could effectively inhibit inflammatory cytokines IL-6 secretion in LPS stimulated mouse macrophages J774A.1. Compound 7m exhibited the most effective anti-inflammatory activity (RAW264.7 IL-6 IC50: 4.57 µM, 32 times more active than osthole) in vitro with no significant influence on cell proliferation. Additionally, the mechanistic analysis demonstrated that compound 7m could block MAPK signal transduction by inhibiting the phosphorylation of JNK and p38, thereby inhibiting the release of inflammatory cytokines. Moreover, in vivo functional investigations revealed that 7m could substantially reduce DSS-induced ulcerative colitis and LPS-induced acute lung injury, with good therapeutic effects. The pharmacokinetics and acute toxicity experiments proved the safety and reliability of 7min vivo. Overall, Compound 7m could further be studied as potential anti-inflammatory candidate.


Asunto(s)
Lesión Pulmonar Aguda , Colitis Ulcerosa , Colitis , Cumarinas , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Lipopolisacáridos/farmacología , Interleucina-6 , Reproducibilidad de los Resultados , Antiinflamatorios/efectos adversos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas , FN-kappa B , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
9.
Diabetes ; 73(5): 780-796, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394639

RESUMEN

Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamación/patología , Citocinas/metabolismo , Ratones Noqueados , Macrófagos/metabolismo , Fibrosis
10.
J Dent Sci ; 19(1): 220-230, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303896

RESUMEN

Background/purpose: The toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2) complex is known to have a role in inflammation. Blocking MD-2 can suppress inflammatory process. However, the actual action of MD-2 inhibitors, including MAC28, L6H21, and 2i-10, on the inflamed human dental pulp cells (HDPCs) has never been examined. This study aims to determine the pharmacological effects of these 3 compounds on cell viability, inflammation, and osteo/odontogenic differentiation of lipopolysaccharide (LPS)-treated HDPCs. Materials and methods: HDPCs were pretreated with 10 µM of MAC28, L6H21, or 2i-10 for 2 h followed by either 20 µg/mL LPS or vehicle for 24 h. Cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mRNA and expression of the proteins TLR4, MD-2, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Osteo/odontogenic differentiation was investigated using qRT-PCR and Alizarin Red staining. Results: LPS did not alter cell viability but significantly increased the expression levels of TLR4, MD-2, TNF-α, and IL-6 in HDPCs while the osteo/odontogenic differentiation ability decreased significantly when compared to the vehicle-treated group. MAC28, L6H21, and 2i-10-pretreatment in LPS-treated HDPCs reduced inflammation and restored osteo/odontogenic differentiation to similar levels as the vehicle-treated group. Conclusion: MAC28, L6H21, and 2i-10 exhibited equal efficacy in attenuating inflammation through downregulation of TLR4-MD-2 signaling and restored osteo/odontogenic differentiation in LPS-treated HDPCs. These MD-2 inhibitors could be considered as the potential therapeutic supplement for curing inflammation of dental pulp in future studies.

11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167061, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342418

RESUMEN

BACKGROUND: Cardiac hypertrophy is a crucial pathological characteristic of hypertensive heart disease and subsequent heart failure. Deubiquitinating enzymes (DUBs) have been found to be involved in the regulation of myocardial hypertrophy. OTU Domain-Containing Protein 6a (OTUD6a) is a recently identified DUB. To date, the potential role of OTUD6a in myocardial hypertrophy has not yet been revealed. METHODS AND RESULTS: We examined the up-regulated level of OTUD6a in mouse or human hypertrophic heart tissues. Then, transverse aortic constriction (TAC)- or angiotensin II (Ang II)- induced ventricular hypertrophy and dysfunction were significantly attenuated in OTUD6a gene knockout mice (OTUD6a-/-). In mechanism, we identified that the Stimulator of Interferon Genes (STING) is a direct substrate protein of OTUD6a via immunoprecipitation assay and mass spectrometry. OTUD6a maintains STING stability via clearing the K48-linked ubiquitin in cardiomyocytes. Subsequently, OTUD6a regulates the STING-downstream NF-κB signaling activation and inflammatory gene expression both in vivo and in vitro. Inhibition of STING blocked OTUD6a overexpression-induced inflammatory and hypertrophic responses in cardiomyocytes. CONCLUSION: This finding extends our understanding of the detrimental role of OTUD6a in myocardial hypertrophy and identifies STING as a deubiquinating substrate of OTUD6a, indicating that targeting OTUD6a could be a potential strategy for the treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Cardiomegalia/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo
12.
Nat Commun ; 15(1): 923, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296942

RESUMEN

Exploring new near-room-temperature thermoelectric materials is significant for replacing current high-cost Bi2Te3. This study highlights the potential of Ag2Se for wearable thermoelectric electronics, addressing the trade-off between performance and flexibility. A record-high ZT of 1.27 at 363 K is achieved in Ag2Se-based thin films with 3.2 at.% Te doping on Se sites, realized by a new concept of doping-induced orientation engineering. We reveal that Te-doping enhances film uniformity and (00l)-orientation and in turn carrier mobility by reducing the (00l) formation energy, confirmed by solid computational and experimental evidence. The doping simultaneously widens the bandgap, resulting in improved Seebeck coefficients and high power factors, and introduces TeSe point defects to effectively reduce the lattice thermal conductivity. A protective organic-polymer-based composite layer enhances film flexibility, and a rationally designed flexible thermoelectric device achieves an output power density of 1.5 mW cm-2 for wearable power generation under a 20 K temperature difference.

13.
Acta Pharmacol Sin ; 45(4): 803-814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38172305

RESUMEN

Overactivation of the NLRP3 inflammasomes induces production of pro-inflammatory cytokines and drives pathological processes. Pharmacological inhibition of NLRP3 is an explicit strategy for the treatment of inflammatory diseases. Thus far no drug specifically targeting NLRP3 has been approved by the FDA for clinical use. This study was aimed to discover novel NLRP3 inhibitors that could suppress NLRP3-mediated pyroptosis. We screened 95 natural products from our in-house library for their inhibitory activity on IL-1ß secretion in LPS + ATP-challenged BMDMs, found that Britannin exerted the most potent inhibitory effect with an IC50 value of 3.630 µM. We showed that Britannin (1, 5, 10 µM) dose-dependently inhibited secretion of the cleaved Caspase-1 (p20) and the mature IL-1ß, and suppressed NLRP3-mediated pyroptosis in both murine and human macrophages. We demonstrated that Britannin specifically inhibited the activation step of NLRP3 inflammasome in BMDMs via interrupting the assembly step, especially the interaction between NLRP3 and NEK7. We revealed that Britannin directly bound to NLRP3 NACHT domain at Arg335 and Gly271. Moreover, Britannin suppressed NLRP3 activation in an ATPase-independent way, suggesting it as a lead compound for design and development of novel NLRP3 inhibitors. In mouse models of MSU-induced gouty arthritis and LPS-induced acute lung injury (ALI), administration of Britannin (20 mg/kg, i.p.) significantly alleviated NLRP3-mediated inflammation; the therapeutic effects of Britannin were dismissed by NLRP3 knockout. In conclusion, Britannin is an effective natural NLRP3 inhibitor and a potential lead compound for the development of drugs targeting NLRP3.


Asunto(s)
Inflamasomas , Lactonas , Proteína con Dominio Pirina 3 de la Familia NLR , Sesquiterpenos , Animales , Humanos , Ratones , Inflamasomas/agonistas , Interleucina-1beta/metabolismo , Lactonas/farmacología , Lactonas/uso terapéutico , Lipopolisacáridos/farmacología , Macrófagos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
14.
Cell Mol Life Sci ; 81(1): 18, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195959

RESUMEN

Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomegalia/inducido químicamente , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Isoproterenol/farmacología , Remodelación Ventricular
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167018, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185350

RESUMEN

Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Ratas , Animales , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo
16.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919475

RESUMEN

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratas , Ratones , Animales , Miocitos Cardíacos/metabolismo , Isoproterenol/toxicidad , Receptores Adrenérgicos beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Macrófagos/metabolismo
17.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981117

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Ginsenósidos , Ratones , Animales , Enfermedad de Alzheimer/patología , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Ginsenósidos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Neurogénesis , Modelos Animales de Enfermedad , Hipocampo
18.
Small ; 20(4): e2306516, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715101

RESUMEN

Antimony selenide (Sb2 Se3 ) is a highly promising photovoltaic material thanks to its outstanding optoelectronic properties, as well as its cost-effective and eco-friendly merits. However, toxic CdS is widely used as an electron transport layer (ETL) in efficient Sb2 Se3 solar cells, which largely limit their development toward market commercialization. Herein, an effective green Cd-free ETL of SnOx is introduced and deposited by atomic layer deposition method. Additionally, an important post-annealing treatment is designed to further optimize the functional layers and the heterojunction interface properties. Such engineering strategy can optimize SnOx ETL with higher nano-crystallinity, higher carrier density, and less defect groups, modify Sb2 Se3 /SnOx heterojunction with better interface performance and much desirable "spike-like" band alignment, and also improve the Sb2 Se3 light absorber layer quality with passivated bulk defects and prolonged carrier lifetime, and therefore to enhance carrier separation and transport while suppressing non-radiative recombination. Finally, the as-fabricated Cd-free Mo/Sb2 Se3 /SnOx /ITO/Ag thin-film solar cell exhibits a stimulating efficiency of 7.39%, contributing a record value for Cd-free substrate structured Sb2 Se3 solar cells reported to date. This work provides a viable strategy for developing and broadening practical applications of environmental-friendly Sb2 Se3 photovoltaic devices.

19.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110583

RESUMEN

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Asunto(s)
Hipertensión Renal , Riñón , Nefritis , Proteasas Ubiquitina-Específicas , Animales , Ratones , Angiotensina II/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Hipertensión Renal/enzimología , Hipertensión Renal/patología , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis/enzimología , Nefritis/patología , Proteasas Ubiquitina-Específicas/metabolismo , Modelos Animales de Enfermedad
20.
Am J Physiol Cell Physiol ; 326(2): C400-C413, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105755

RESUMEN

Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.


Asunto(s)
Hipertensión Renal , Nefritis , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Angiotensina II/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Riñón/metabolismo , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Células Epiteliales/metabolismo , Fibrosis , Neoplasias Ováricas/metabolismo , Ubiquitinas/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...